Early genome duplications in conifers and other seed plants

نویسندگان

  • Zheng Li
  • Anthony E Baniaga
  • Emily B Sessa
  • Moira Scascitelli
  • Sean W Graham
  • Loren H Rieseberg
  • Michael S Barker
چکیده

Polyploidy is a common mode of speciation and evolution in angiosperms (flowering plants). In contrast, there is little evidence to date that whole genome duplication (WGD) has played a significant role in the evolution of their putative extant sister lineage, the gymnosperms. Recent analyses of the spruce genome, the first published conifer genome, failed to detect evidence of WGDs in gene age distributions and attributed many aspects of conifer biology to a lack of WGDs. We present evidence for three ancient genome duplications during the evolution of gymnosperms, based on phylogenomic analyses of transcriptomes from 24 gymnosperms and 3 outgroups. We use a new algorithm to place these WGD events in phylogenetic context: two in the ancestry of major conifer clades (Pinaceae and cupressophyte conifers) and one in Welwitschia (Gnetales). We also confirm that a WGD hypothesized to be restricted to seed plants is indeed not shared with ferns and relatives (monilophytes), a result that was unclear in earlier studies. Contrary to previous genomic research that reported an absence of polyploidy in the ancestry of contemporary gymnosperms, our analyses indicate that polyploidy has contributed to the evolution of conifers and other gymnosperms. As in the flowering plants, the evolution of the large genome sizes of gymnosperms involved both polyploidy and repetitive element activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of Genome Size in Conifers

Conifers are the most widely distributed group of gymnosperms in the world. They have large genome size (1C-value) compared with most animal and plant species. The genome size ranges from ~6,500 Mb to ~37,000 Mb in conifers. How and why conifers have evolved such large genomes is not understood. The conifer genome contains ~75% highly repetitive DNA. Most of the repetitive DNA is composed of no...

متن کامل

Sequenced genomes and rapidly emerging technologies pave the way for conifer evolutionary developmental biology

Conifers, Ginkgo, cycads and gnetophytes comprise the four groups of extant gymnosperms holding a unique position of sharing common ancestry with the angiosperms. Comparative studies of gymnosperms and angiosperms are the key to a better understanding of ancient seed plant morphologies, how they have shifted over evolution to shape modern day species, and how the genes governing these morpholog...

متن کامل

Birth of Four Chimeric Plastid Gene Clusters in Japanese Umbrella Pine

Many genes in the plastid genomes (plastomes) of plants are organized as gene clusters, in which genes are co-transcribed, resembling bacterial operons. These plastid operons are highly conserved, even among conifers, whose plastomes are highly rearranged relative to other seed plants. We have determined the complete plastome sequence of Sciadopitys verticillata (Japanese umbrella pine), the so...

متن کامل

Phylogenomics and Coalescent Analyses Resolve Extant Seed Plant Relationships

The extant seed plants include more than 260,000 species that belong to five main lineages: angiosperms, conifers, cycads, Ginkgo, and gnetophytes. Despite tremendous effort using molecular data, phylogenetic relationships among these five lineages remain uncertain. Here, we provide the first broad coalescent-based species tree estimation of seed plants using genome-scale nuclear and plastid da...

متن کامل

Systematic Error in Seed Plant Phylogenomics

Resolving the closest relatives of Gnetales has been an enigmatic problem in seed plant phylogeny. The problem is known to be difficult because of the extent of divergence between this diverse group of gymnosperms and their closest phylogenetic relatives. Here, we investigate the evolutionary properties of conifer chloroplast DNA sequences. To improve taxon sampling of Cupressophyta (non-Pinace...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015